Generalized Combined Field Integral Equations for the Iterative Solution of the Three-dimensional Helmholtz Equation
نویسندگان
چکیده
This paper addresses the derivation of new second-kind Fredholm combined field integral equations for the Krylov iterative solution of tridimensional acoustic scattering problems by a smooth closed surface. These integral equations need the introduction of suitable tangential square-root operators to regularize the formulations. Existence and uniqueness occur for these formulations. They can be interpreted as generalizations of the well-known Brakhage-Werner [A. Brakhage and P. Werner, Arch. Math. 16 (1965) 325–329] and Combined Field Integral Equations (CFIE) [R.F. Harrington and J.R. Mautz, Arch. Elektron. Übertragungstech (AEÜ) 32 (1978) 157–164]. Finally, some numerical experiments are performed to test their efficiency. Mathematics Subject Classification. 76Q05, 78A45, 47G30, 35C15, 65F10. Received: January 9, 2006.
منابع مشابه
Generalized Combined Field Integral Equations for the Iterative Solution of the Helmholtz Equation in Three Dimensions
This paper addresses the derivation of new second-kind Fredholm combined field integral equations for the Krylov iterative solution of acoustic scattering problems. These integral equations need the introduction of suitable tangential square-root operators to regularize the formulations. Existence and uniqueness occur for these formulations. They can be interpreted as generalizations of the wel...
متن کاملApplication of Fuzzy Bicubic Splines Interpolation for Solving Two-Dimensional Linear Fuzzy Fredholm Integral Equations
In this paper, firstly, we review approximation of fuzzy functions by fuzzy bicubic splines interpolation and present a new approach based on the two-dimensional fuzzy splines interpolation and iterative method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equation (2DLFFIE). Also, we prove convergence analysis and numerical stability analysis ...
متن کاملThe solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
متن کاملA new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind
In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...
متن کاملA Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations
This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...
متن کامل